

College of Creative Arts

In the set of

UNIVERSITY OF NEW ZEALAND

Dunning Thornton consultants

RLB Rider Levett Bucknall

UNIVERSITY OF NEW ZEALAND

A New Zealand 'world first' – post tensioned LVL beams & columns / precambered LVL / precast slabs

UNIVERSITY OF NEW ZEALAND

Part 1

Design phase – documenting and testing the theory

- Massey University brief
- Architectural competition
- Unique design post tensioned LVL
- Early trade tendering
- Peer review of DT structural design
- Production testing of LVL/composite floor slabs/Unitised Curtainwall

UNIVERSITY OF NEW ZEALAND

Part 2 Construction - delivering the vision

- Prefabrication strategies s
- Bracing –"a house of cards"
- Hoisting / scaffolding
- Speed of production
- Cost / Benefits

Basic Building Statistics

- Alistair Cattanach in response to a question regarding the basis of the seismic design for the College of Creative Arts building. Based on a1 in 500 year event as required by code. Events like a 8.1 on the Wiarapa Fault or 7.5-7.8 on the Wellington Fault would withstand a Christchurch event even with the same peak accelerations.
- Building materials sustainable where possible
- Stories various in our case five levels
- Typical LVL building 3.6m floor to floor x 3 floors 10.8 metres overall. approximately 3m to the bottom of the LVL beam / corbel
- Typical Grid 7.2m. Column spacing's approximately 9m (long span) and 6m (short span).
- AC Passive Ventilation 247 Window Actuators BMS driven Double glazing throughout
- Heating –a combination of low radiators + under floor heating

DESIGN MANAGEMENT – HISTORICAL CONTEXT

The Massey University Brief – Key Principals

- 1. World class facility operating in a global market
- 2. Open flexible teaching spaces and studios
- 3. Inspire and respond to users
- 4. Visual inspirational experiences
- 5. Sustainability and response to the natural environment
- 6. Energy efficiency
- 7. Flexible building services
- 8. Draft Schedule of Accommodation

DESIGN MANAGEMENT – HISTORICAL CONTEXT

The Architectural Design Competition

- 1. 35 registrations of interest
- 2. 4 firms shortlisted
- 3. Athfield entry responded most closely to the brief including the budget criteria

July 2009

July 2012

WHY POST TENSIONED LVL ?

Why take the risk (real or perceived) to take the next step ?

- Response to the competition brief
- Seismic performance in a significant earthquake
- Historical context NMIT

DESIGN MANAGEMENT – EARLY TRADE TENDERING

UNIVERSITY OF NEW ZEALAND

Eliminating / mitigating technology risk

- Alternatives considered by design / QS team
- Early trade tendering early June 2010 four months prior to the completion of design
- Production testing / prototypes
 - 1. Post tensioned LVL / beam column joint
 - 2. Precambered composite floor slabs
 - 3. Unitised Curtainwall

POST TENSIONED LVL BEAM/COLUMN DESIGN CONCEPT

LVL beam / column superstructure frame

- Designed to 2.5% 250mm (at the top of a 10m high column). Curtainwall follows in East / West event and can slide in head / sill sub-frames in a North / South event
- Post Tensioning Loads (Beams 120kN x 6 = 72Tonnes) 100 year life
- Post Tensioning Loads (Columns 116kN x 6 = 70Tonnes)
- Post Tensioning Loads (Precast Shear Walls 80kN x 17 = 135Tonnes)

DESIGN MANAGEMENT

Testing of the beam / column / shear block assembly

- Canterbury University early approval and testing during developed design (Professor Andy Buchanan, Associate Professor, Stefano Pampinin, Doctorial students)
- Test results tested at 4% code is
 2%
- Peer review of the structural design – part of Building Consent process

DESIGN MANAGEMENT

Composite floor slabs – production testing of prototypes

- Steel mould commitment to only two prototype slabs one mould
- Pre-camber pour / screed 5mm drop out of mould
- 28 day cure in 1 yr. should be flat!

DESIGN MANAGEMENT

Curtainwall prototype

- Included as part of an early tender Major Australia and New Zealand suppliers / subcontractors
- Early June 2010 tender 4 months to assist with Developed Design

- Double glazing
- Europan Natura exterior prefabricated low maintenance 50 yr. life
- Echo Panel Interior site installed
- Actuators installed with cabling within the mullions
- Weather tightness testing regime

Part 2 Construction - delivering the vision

- College of Creative Arts structural design / site geometry
- Programme speed of production keeping up with the LVL
- Prefabrication strategies four key elements
- Bracing –"a house of cards"
- Cost / benefits of LVL
- Lessons
- Questions

CONSTRUCTION – THE DESIGN AND THEORY

Basic Structural Design

CONSTRUCTION – THE SHARP END

THE ENGINE OF THE NEW NEW ZEALAND

Site Geometry

- 8.5m steep wall excavation
- Multiple work faces

CONSTRUCTION – THE SHARP END

THE ENGINE OF THE NEW NEW ZEALAND

Site Geometry – Ground Conditions

CONSTRUCTION – THE DESIGN AND THEORY

Plinth Structure: Basement to Level 2

- Ridged robust structure
- Traditional materials concrete, precast, blockwork and steel
- Structural design had to respond not only the new building but also the buildings above in an earthquake

CONSTRUCTION – THE DESIGN AND THEORY

Main Upper Floor Bracing Walls

• North / South – post tensioned shear walls

THE ENGINE OF THE NEW NEW ZEALAND

CONSTRUCTION – THE DESIGN & THEORY OF THE LVL FRAME

- Typical Upper Floor
- Post tensioned LVL beams and columns
- Composite floor slabs
- Insitu stitch joints

Placing / erecting the worlds first post tensioned LVL columns / beams and pre-cambered composite slabs

• No mechanical connections at the beams/column joints – designed to move!

26 May 2012

25 August 2012

Placing / erecting the worlds first post tensioned LVL columns / beams and pre-cambered composite slabs

• Sequence of operations

LVL Columns, deviator assemblies and beams

• Typical Columns – 63mm billet sizes

- 1.2 T, light weight
- Two locator pins some shear capacity
- Designed to avoid "walking" at the base

Bracing / propping the LVL column / beam frame

- Threaded rebar ties tension braces
- Steel struts compression braces
- Props, ropes & straps

THE ENGINE OF THE NEW NEW ZEALAND

Bracing / propping the LVL column / beam frame

Wet trade – Stitch Joints

- programming constraint but alternative available in the future
- Tight tolerances plane off 1mm to slip in!
- Matching finishes / levels

THE ENGINE OF THE <mark>NEW</mark> NEW ZEALANE

Transfer Beams and Exposed Columns

- H3.1 with Dryden's Wood Oil
- Trimmer beam cover
- BRANZ visit!

CONSTRUCTION – THE DESIGN & THEORY AND THE SHARP END

THE ENGINE OF THE NEW NEW ZEALA

• The guts of the design – the beam column joint (inside and out)

Post Tensioned Seismic Frames

CONSTRUCTION – THE DESIGN & THEORY AND THE SHARP END

Post Tensioned Seismic Frames

- Beam / Column Joint
- Deviator pins & assemblies

CONSTRUCTION – THE LVL ROOF AND PLY CEILINGS

Roof Structure

Keeping up with the frame and prefabricate the roof

CONSTRUCTION – THE LVL ROOF AND PLY CEILING

• Finished ply ceiling included in each section.

Roof Structure

CONSTRUCTION – ATTACHING THE UNITISED CURTAINWALL

Unitised Curtainwall

Some Lessons and Suggestions

Post tensioned LVL beams / columns and composite LVL / precast slabs - lessons

- On-site and off-site observation are equally important
- Shop drawings and shop drawing reviews are critical
- QA records must meet very high standards
- Temporary protection of LVL needs be considered carefully
- Inclusion of metalwork components and factory installation is recommended for QA
- Early contractor / subcontractor involvement
- Stitch joints and curing constraints need to be re-thought (wet trades)
- Better bracing planning and temporary beam / column mechanical fixing should be considered in the future
- The next stage is likely to be very efficient even when compared to steel

COST / BENEFIT REVIEW

Cost/Revenue Benefits – 'Poor mans base isolcation'

 Minor cost premium over alternatives for significantly improved seismic performance

- Environmentally Sustainable Design (ESD) use of New Zealand raw materials fully recyclable
- Structure intact and usable after an earthquake and aftershocks damage avoidance design
 - Reduced insurance premiums?
 - creased rental rates?
 - creased tenancy terms?
 - Reduced loss of business impacts
 - Refer NMIT study and *"A Case for Tall Wood Buildings"* (Energy consumption benefits, reduced GWP, etc.)

THE ENGINE OF THE NEW NEW ZEALAND

Directions

 New combinations of technologies used on MIT and the College of Creative Arts
 Multi story wood buildings

11.1	100.11	Т
		-
		+
		1
11.1		1
1		1
L	0.11	1
T-	- 11	

OPTION 1 - Up to 12 Storeys

OPTION 2 - Up to 20 Stoneys

Windows

Đ.

0

THE ENGINE OF THE NEW NEW ZEALAND

Green Roof

STUDIO SPACE AND VENTILATION & LIGHT SHAFT

UNIVERSITY OF NEW ZEALAND

Interior

UPPER ACCESS

UNIVERSITY OF NEW ZEALAND

Interior

TE ARO HIHIKO

DAY AND NIGHT

SUB - Title

BODY OF INFORMATION

SUB - Title

BODY OF INFORMATION

SUB - Title

BODY OF INFORMATION

